В шестую группу периодической системы Д.И.Менделеева, подгруппу кислорода, входят несколько элементов, получивших название халькогенов. К ним относится и сера. Она распространена как в живой, так и неживой природе, и встречается в свободном состоянии, а также в составе сложных неорганических и органических веществ. В нашей статье мы изучим соединения серы и приведем примеры их применения в промышленности.
Элемент составляет примерно 0,05 массы земной коры. Простое вещество в виде самородной серы добывают в Крыму, Поволжье, государствах Средней Азии, а также в Италии и США. В составе соединений элемент встречается в горных породах и минералах: в железном колчедане, киновари, свинцовом блеске и цинковой обманке. В качестве макроэлемента молекулы серы входят в состав белков растений, животных и человека. В незначительных количествах соединения серы можно обнаружить в жидких природных углеводородах, например, нефти.
Химический символ элемента – S, он расположен в третьем периоде. Сера является неметаллом, то есть является p-элементом. На последнем энергетическом уровне ее атома находится шесть электронов. Они образуют две электронные пары, а еще две отрицательно заряженные частицы остаются неспаренными. Такое состояние атома является невозбужденным. Например, химическое соединение серы - сероводород H2S, содержит частицу S, имеющую степень окисления -2. В других веществах, таких как диоксид серы SO2, степень окисления элемента равна +4. В возбужденном состоянии атома валентными становятся все шесть электронов. Например, в серной кислоте H2SO4 сера будет иметь степень окисления +6.
Твердое вещество желтого цвета, легко крошащееся при механическом ударе, не смачивается водой – это сера. В природе обнаружено четыре ее стойких изотопа. Она может растворяться в анилине, сероуглероде, плохо проводит электрический ток и тепло. Рассмотрим аллотропные соединения серы. Химия выделяется следующие их виды: ромбическая, пластическая и моноклинная. Первая представлена кристаллами в виде октаэдров, она характерна для природного вещества. Температура плавления - 113⁰, плотность составляет 2,07 г/см3. Чтобы получить порцию моноклинной серы, требуется расплавить вещество, а затем медленно его охлаждать. Образуются кристаллы в виде иголок, темно-желтого цвета, сохраняющие свои свойства (температура плавления 119⁰, плотность – 1,96 г/см3) только при температуре, выше 96°.
Если же вещество продолжает остывать, оно переходит в ромбическую модификацию. Существует еще одна форма – аморфная, коричневого цвета, пластическая сера. Внешне она очень похожа на резину, может принимать любую форму и даже растягиваться в виде нитей. Получают вещество, струей выливая расплавленную серу в холодную воду. Находясь длительное время на воздухе, она затвердевает и теряет пластичность, становясь ромбической формой. Для серы характерно не только твердая или жидкая фаза, но и газообразное состояние. Так, при температуре 444,6⁰ она кипит и переходит в пар темно-коричневого цвета. При резком его охлаждении появляется серный цвет – порошок, состоящий из чешуйчатых мелких кристаллов серы.
Твердая ромбическая сера имеет молекулы, состоящие из восьми атомов. Они соединены между собой ковалентными неполярными связями, образуя кольцевидную структуру, которая в период нагревания разрушается. Вещество будет иметь вид обрывков цепей с частицами S, образуется полимерная структура со свойствами резины. Пары серы можно представить как систему, в которой устанавливается химическое равновесие между молекулами, содержащими различное количество атомов серы: два, четыре, шесть или восемь. Существование различных физических форм серы можно объяснить строением ее молекул.
Формула оксида химического элемента S зависит от того, какую степень окисления имеет в нем атом серы. Например, SO2 – это диоксид серы, проявляющей степень окисления +4. Это газообразное вещество бесцветно и обладает удушливым резким запахом. Уже при температуре -10° оно переходит в жидкую фазу. В химических процессах ведет себя, как восстановитель. Сернистый ангидрид получают несколькими способами, например, сжигая серу:
S + O2 → SO2 + Q
Сернистый газ можно также добыть в реакции меди с концентрированной сульфатной кислотой при нагревании:
Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O
Промышленный способ получения диоксида серы заключается в сжигании пирита или других серосодержащих минералов, например, свинцового блеска или цинковой обманки. Соединение используют как основное сырье в производстве сульфатной кислоты.
Продолжая рассматривать кислородные соединения серы, остановимся на серном ангидриде. Это жидкость без цвета, при температуре ниже +17⁰ она переходит в твердые кристаллы. Проявляет сильные гигроскопические свойства, и, поглощая пары воды, превращается в серную кислоту:
SO3 + H2O → H2SO4
Хранят серный ангидрид в герметически закрытых емкостях, обычно это - запаянные колбы. Вещество имеет свойства кислотного оксида и является промежуточным продуктом в сульфатном производстве.
В состав компонентов вулканических газов и минеральных источников часто входят молекулы H2S. Водородное соединение серы - сероводород – газ с запахом тухлых яиц, ядовит, хорошо растворим в воде. Он является продуктом распада белковых веществ, присутствующих в растительных и животных организмах. Газ получают в лаборатории под вытяжкой из водорода и серы, нагревая смесь исходных реагентов. Более распространенным способом получения сероводорода в лабораторных условиях является действие разбавленной хлоридной или сульфатной кислоты на сульфид железа.
В производственных технологиях, идущих с образованием сероводорода, необходимо соблюдать правила техники безопасности. Концентрация газа в цехе или другом помещении не должна превышать 0,01 в 1 л воздуха, так как вещество разрушает, прежде всего, нервную систему человека. Раствор сероводорода в воде называют сульфидной кислотой, она является слабым электролитом и образует два вида солей: сульфиды и гидросульфиды. Соединения серы, в состав которых входят атомы щелочных и щелочноземельных металлов, а также практически все кислые соли, хорошо растворимы в воде. Чтобы определить присутствие в растворе свободных ионов S2-, проводят качественную реакцию с растворимыми солями, содержащими ион свинца. Выпадение осадка сульфида свинца черного цвета указывает на то, что исследуемое вещество является сульфидной кислотой или ее солью.
Получают сульфиды, пропуская H2S через раствор сульфата соответствующего металла. Большинство средних солей имеют характерную окраску: например, сульфид марганца – розовую, соли свинца или меди – черную, сульфид кадмия – желтую. Эта особенность используется в аналитической химии для анализа катионов.
Какое соединение серы является наиболее важным в химии? Конечно же, это сульфатная кислота. Она является много тоннажным продуктом химического производства и востребована в большинстве сфер человеческой деятельности. Серную кислоту применяют при очистке нефтепродуктов, в производстве минеральных удобрений, пластмасс, красителей, лекарственных средств, а также в сельском хозяйстве. Технология получения H2SO4 состоит из трех стадий: получение диоксида серы выжиганием пирита, окисление его до серного ангидрида, поглощение его концентрированной серной кислотой и образование олеума. Его разбавляют водой и получают сульфатную кислоту заданной концентрации. Хранят ее в специальных стальных цистернах, которые можно перевозить к месту дальнейшего использования.
Источник